

DPP No. 2

Max. Time : 24 min.

Topics : Fundamentals of Mathematics, Circle, Quadratic Equation, Determinants

Type of Questions		М.М.,	Min.
Single choice Objective (no negative marking) Q. 1, 2, 3	(3 marks, 3 min.)	[9,	9]
Short Subjective Questions (no negative marking) Q. 4, 5, 6, 7, 8	(3 marks, 3 min.)	[15,	15]

1. The integral values of x for which $x^2 + 7x + 13$ is perfect square are

(A) - 4, 5, 2 (B) - 3, -2 (C) - 4, -3, -2 (D) - 4, -3

- 2. Two equal circles of radius R are touching each other externally . If a smaller circle of radius ' r ' is touching both of these circles as well as their direct common tangent , then the ratio r : R is :
 - (A) 1 : $\sqrt{2}$ (B) 1 : 2 (C) 1 : $2\sqrt{2}$ (D) 1 : 4
- 3. If the equation $\sin^4 x (k + 2) \sin^2 x (k + 3) = 0$ has a solution then k must lie in the interval :
 - (A) (-4, -2) (B) [-3, 2) (C) (-4, -3) (D) [-3, -2]
- $\textbf{4.} \qquad \text{Show that } x^4 + 4 \text{ is prime for only one value of } x \in N$
- 5. Find the range of values of x for which the equaiton $[x]^2 + [x]^2 = 13$ holds true.

(Here [x] denotes the greatest integer just less than or equal to x and $\lceil x \rceil$ denotes the least integer just greater than or equal to x)

6. Find the locus of the middle points of chords of the circle $x^2 + y^2 = a^2$ which subtend a right angle at the point (c, 0).

7. Show that
$$\Delta = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$$

8. Prove that
$$\begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix}$$
 = $(ab + bc + ca)^{3}$.

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

Answers Key

- **1.** (D)
- **2.** (D)
- **3.** (D)
- **5.** $x \in (-3, -2) \cup (2, 3)$
- 6. $2x^2 + 2y^2 2cx + c^2 a^2 = 0$

Get More Learning Materials Here : 📕

